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FOREWORD

The objective of this program was to evaluate the influence of commercial advanced

processing methods on the mechanical properties of a single crystal nickel base superalloy.

Process variables investigated were casting thermal gradient, hot isostatic pressing and

alternate heat treatments.

This report describes the results of the evaluation conducted under the scope of this program.

The program was performed at the Rocketdyne Division of Rockwell International under the

aegis of the National Aeronautics and Space Administration - Lewis Research Center,

Cleveland, Ohio, contract number NAS3-24646. Dr. G. D. Schnittgrund of Rocketdyne

Division Materials and Chemical Technology was Program Manager, Dr. L. G. Fritzemeier of

Materials Engineering and Technology, was project engineer and Dr. R. L. Dreshfield was

NASA Program Monitor.
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EXECUTIVE SUMMARY

The primary objective of this program was to evaluate the influence of advanced processing

methods on the microstructure and mechanical properties of a single crystal nickel base

superalloy. A secondary purpose was to evaluate potential vendors for production of Space

Shuttle Main Engine (SSME) high pressure turbopump turbine blades. The alloy chosen for

the study was PWA 1480, a well characterized, commercial alloy which had previously been

chosen as a candidate for the SSME high pressure turbopump turbine blades. The processing

variables investigated were high thermal gradient casting, hot isostatic pressing (HIP) and

alternate heat treatments. Microstructural characterization evaluated the influence of casting

thermal gradient on dendrite arm spacing, casting porosity distribution and alloy

homogeneity. Hot isostatic pressing was evaluated as a means of eliminating porosity as a

preferred fatigue crack initiation site. The alternate heat treatment was chosen to improve

hydrogen environment embrittlement resistance and for potential fatigue life improvement.

Mechanical property evaluation was aimed primarily at determining improvements in low

cycle and high cycle fatigue life due to the advanced processing methods. Statistically

significant numbers of tests were conducted to quantitatively demonstrate life differences.

Commercial high thermal gradient casting provides a benefit in as cast homogeneity, which

facilitates solution heat treatment of this turbine blade alloy. High thermal gradient casting

also provides a decrease in internal pore size, which leads to increases in low cycle fatigue

and high cycle fatigue life. High cycle fatigue lives are more significantly affected. Low cycle

fatigue life was found to depend more strongly on yield strength than on crack initiating

defects, under the conditions tested. High cycle fatigue lives are dependent both on defect size

and location relative to the specimen surface. Hot isostatic pressing, when properly applied,

provides dramatic increases in high cycle fatigue life, due to the elimination of casting

porosity as crack initiation sites. The sensitivity of the HIP process to prior processing was

demonstrated by the inability to avoid surface recrystallization due to handling damage and

apparent internal recrystallization at very large pore sizes in the standard gradient material.

Alternate heat treatment was found to have little influence on high cycle fatigue life in the

regime tested, but affected low cycle fatigue lives by improving yield strength. Tensile

properties were relatively insensitive to the HIP and high thermal gradient casting, but were

somewhat improved by the alternate heat treatment. The alternate heat treatment was also

shown to reduce high load, intermediate temperature, stress rupture lives.





1.0 INTRODUCTION

The most advanced, large liquid propellant rocket engine currently in service is the Space

Shuttle Main Engine (SSME). This reusable engine develops 2.09 MN sea level thrust, is

designed to provide 55 launches and has an operational life of 7.5 hours at rated (100%)

power level. The SSME high pressure fuel lurbopump (HPFTP) and high pressure oxidizer

turbopump (HPOTP) are, concomitantly, the most advanced rocket engine turbines in

service. Materials selection for those turbines was finalized in 1971, at which time

directionally solidified, hafnium modified MAR-M246 (DS MAR-M246) (Trademark of the

Martin-Marietta Company) was chosen as the turbine blade alloy. The operating environment

in hydrogen fueled rocket engine turbines is significantly different from the aircraft gas

turbine environment for which that alloy was developed. Rocket engine turbines operate at

significantly higher rotational speeds, resulting in higher tensile, creep and fatigue mean

loads, with significantly higher thermal fatigue strains and thermal shock caused by start and

stop temperature transients. Rocket engine operating life limits, are, however, much

shorter. As a consequence, rocket engine turbine blade materials are limited by tensile and

short time creep strengths, high thermal strain low cycle fatigue, high mean stress high

cycle fatigue strengths and thermal shock resistance, whereas gas turbine engine turbine

blade lives tend to be limited more by long time creep strength and lower mean stress high

cycle fatigue strength.

The differences in operating environment are most strongly apparent in the fundamentally

dissimilar working fluids of the two classes of turbine engines. The SSME turbines are

essentially high temperature steam turbines, driven by a high pressure 1:1 weight ratio of

steam to unreacted hydrogen gas. The SSME is not exposed to the sulfur compounds and other

by-products of the combustion processes in gas turbine engines. Foreign object damage is also

highly unlikely in the closed rocket engine turbine system. Hydrogen embrittlement,

however, even in the presence of water vapor, has been found to degrade many alloys.

The severe demands on the material have caused distress in the turbine blade alloy during

SSME engine operation, leading to early retirement of the components. High cycle fatigue,

thermally induced low cycle fatigue and hydrogen assisted cracking have all been observed at

various times following post-test inspection. Recognition of this problem has led to

significant effort in identification and evaluation of candidate materials for improved turbine

blade capability. Single crystal superalloys were identified in an earlier study in this

program as the best near-term candidate for improved SSME turbine blades. 1
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The objective of this program was to evaluate advanced processing methods as a means of

further improving the properties of single crystal superaUoys for rocket engine

applications. Commercial high thermal gradient casting processes, hot isostatic pressing and

alternate heat treatments were evaluated for potential application. Mechanical property

testing was employed to quantify the expected life improvements.
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2.0 PROGRAM PLAN

This program was conceived to evaluate the influence of high thermal gradient casting, hot

isostatic pressing (HIP) and alternate heat treatment on the microstructure and properties of

a single crystal superalloy. One objective of the program was to employ commercial

processes, where possible, in order to facilitate transfer of the results to the SSME program.

A secondary objective was to identify potential suppliers of single crystal turbine blades to

the SSME program.

The program comprised an 36 month basic schedule, Figure 2-1, with a 6 month task

included to procure additional material. Six technical tasks and one reporting task were

included:

Task

Task

Task

Task

Task

Task

Task

1 - Literature Survey and Alloy Selection

2 - Standard Thermal Gradient Solidification

3 - High Thermal Gradient Solidification

4 - Hot Isostatically Pressed High Thermal Gradient Castings

5 - Material Evaluation

6 - Additional Material (Government Deliverables)

7- Reporting

The program flow diagram is shown in Figure 2-2.

Task 1 consisted of a review of available information concerning the properties of various

single crystal superalloys and selection, from the available alloys, of a candidate material

to be employed in this program. Upon approval of the NASA Program Monitor, the selected

alloy was cast into single crystal test bars and demonstration high pressure fuel turbopump

turbine blades, employing standard thermal gradient (Task 2) and high thermal gradient

(Task 3) casting processes. The distinction between standard and high thermal gradient

processes was set at 30°C/cm. Half of the material from Task 2 was heat treated according

to industry practice for the alloy (standard gradient/standard heat treatment). The

remaining half was hot isostatically pressed (HIP) employing a process developed by

Rocketdyne prior to this program and heat treated according to an alternate schedule

(standard gradient/HIP/allernate heat treatment). Half of the high gradient test material

cast in Task 3 was heat treated according to the alternate heat treatment (high

gradient/alternate heat treatment). The optional task, Task 4, was instituted to HIP the

5
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remaining half of the material from Task 3., This material was also given the alternate heat

treatment (high gradientlHIPlalternate heat treatment). These materials were evaluated in

Task 5. Metallographic evaluation was conducted to determine the influence of casting

thermal gradient on homogeneity, dendrite arm spacing and porosity density and size.

Scanning electron microscopy was employed to characterize the size and morphology of the

strengthening y phase for both standard and alternate heat treatments. Mechanical testing

included tensile, stress-rupture, low cycle fatigue and high cycle fatigue. Special emphasis

was placed on the determination of differences in fatigue life among the material conditions.

A statistically significant number of tests was conducted for each test condition. Material of

each process combination was supplied to NASA-LeRC under Task 6. Both test bar castings

and sample SSME turbopump turbine blade castings were supplied. Reporting for Task 7

consisted of monthly progress narratives, quarterly progress reports and oral

presentations at both the NASA - Lewis Research Center and the NASA - Marshall Space

Flight Center.

8



3.0 RESULTS

The results and discussion of the program are presented here by program task, as outlined

in the preceding section.

3.1 Task 1 Literature Review and Material Selection

Prior to selection of a single crystal superalloy for development for the SSME turbine

blades, criteria were developed which the successful alloy must meet. Because of the

hydrogen rich steam environment in which the blade must survive, hydrogen environment

embrittlement (HEE) resistance was considered of primary importance. A candidate single

crystal superalloy must exhibit HEE resistance at least equivalent to DS MAR-M246, the

current SSME turbine blade alloy. Rocketdyne has developed a standard HEE screening

methodology for materials to be used in high pressure hydrogen environments. Tensile tests

are conducted in 34.5 MPa hydrogen environment at room temperature. Previous testing

has revealed that, for most materials, hydrogen embrittlement effects are most severe at or

near room temperature. 2 High pressure helium environment testing is conducted as a

baseline, to minimize differences in test methodology. Both notched bar (k t = 6.3) and

smooth bar tensile tests are conducted. Embrittlement is manifested as a reduction in

notched bar ultimate tensile strength, smooth bar tensile ductility or both. The ratios of the

strength or ductility of the material when tested in hydrogen versus helium are good

measures of the degree of susceptibility to HEE.

Notched bar ultimate strength ratios of the materials evaluated prior to the start of this

program are shown in Figure 3-1. One of the alloys evaluated, PWA 1480, (Trademark of

Pratt & Whitney Aircraft) exhibits a notched bar ultimate strength ratio superior to DS

MAR-M246. Two other alloys, CMSX-2 (Trademark of Cannon-Muskegon) and Rene' N4

(Trademark of General Electric Corporation) exhibit notched bar ultimate strength ratios

similar to DS MAR-M246. Only Rene' N4 and PWA 1480 also exhibit smooth bar ductility

ratios clearly superior to DS MAR-M246, as shown in Figure 3-2. Of these two alloys,

Rene' N4 has been replaced by a later generation alloy and is no longer commercially

available. PWA 1480 is commercially available, has logged numerous flight hours in both

commercial and military gas turbine engines and has undergone extensive characterization.

Only a limited amount of mechanical properties data for single crystal superalloys is

available in the literature base. In general, published data focus on long term creep and



SINGLE CRYSTAL SUPERALLOYS
HYDROGEN SUSCEPTIBILITY

,,- 04 GO Or)

<C n"
< _, _ _ d: :_ x x <

X X < 0 CO GO GO

Go _ :_ o o z
a o o

3-1 Notched bar hydrogen/helium ultimate strength ratios for candidate single crystal

superalloys.

0.2

0.0

SINGLE CRYSTAL SUPERALLOY
HYDROGEN SUSCEPTIBILITY

3- 2 Smooth bar hydrogen/helium tensile ductility ratios for candidate single crystal

superalloys.

ORIGINAL PAGE IS

1 0 OF POOR QUALITY
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measures of the degree of susceplibility to HEE.

Notched bar ultimate strength ratios of the materials evaluated prior to the start of this

program are shown in Figure 3-1. One of the alloys evaluated, PWA 1480, (Trademark of

Pratt & Whitney Aircraft) exhibits a notched bar ultimate strength ratio superior to DS
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(Trademark of General Electric Corporation) exhibit notched bar ultimate strength ratios

similar to DS MAR-M246. Only Rene' N4 and PWA 1480 also exhibit smooth bar ductility

ratios clearly superior to DS MAR-M246, as shown in Figure 3-2. Of these two alloys,

Rene' N4 has been replaced by a later generation alloy and is no longer commercially

available. PWA 1480 is commercially available, has logged numerous flight hours in both

commercial and military gas turbine engines and has undergone extensive characterization.

Only a limited amount of mechanical properties data for single crystal superalloys is
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stress rupture behavior and oxidalion/sulfidation resistance. As discussed previously,

these properties are not of primary emphasis for the rocket engine application. The

published data on alloys such as PWA 14803, NASAIR 1004, the CMSX series 5 and the

Rolls Royce developed alloys 6 indicated that, overall, the mechanical properties of the

single crystal alloys were quite similar. Rocketdyne chose PWA 1480, based upon superior

HEE resistance and availability of data, as the best available alloy for the SSME applications

in 1984. Rocketdyne developed an extensive data base for the production version of the alloy

in the following 2 years. 7 PWA 1480 was therefore recommended, and approved by the

NASA Program Monitor, as the alloy to be used in this program. Material was procured

from PCC Airfoils for casting of the required single crystal samples in Task 2 and Task 3. A

total of 340 kilograms of PWA 1480 master alloy meeting the requirements of Rocketdyne

Specification RB0170-250 was obtained. The chemistry of the master alloy heat is given in

Table 3-1.

HEAT

Table 3-1 PWA 1480 CHEMISTRY
MAJOR ELEMENTS IN WEIGHT PERCENTS

SPECIFICATION
ELEMENT MINIMUM MAXIMUM PFKX_RAM

NICKEL BALANCE
CHROMIUM 9.5 10.5 10.16
COBALT 4.5 5.5 5.35
TUNGSTEN 3.75 4.25 4.13
TANTALUM 11.75 12.25 11.95
ALUMINUM 4.75 5.25 4.91
TITANIUM 1.25 1.75 1.35

BALANCE

3.2 Task 2 Standard Gradient Solidification

Standard thermal gradient casting of cylindrical single crystal PWA 1480 test bars and

turbine blade castings was conducted at PCC Airfoils. A number of difficulties were

encountered during the course of production of the test material. It was determined that PCC

had previously had some difficulty in achieving acceptable solution heat treated

microstructures in PWA 1480. The microstructural specification for the program

required complete solutioning of interdendritic primary 7' and no more than 2% residual

casting eutectic. The solution heat treatment window, the temperature difference between

the 7' solvus and incipient melting temperature, for PWA 1480 is very narrow, on the

1!



order of 3°C, when traditional constant temperature solution heat treatment cycles are

employed. A recommended heat treatment schedule was provided for vendor evaluation and

adaptation to this particular master heat chemistry. The heat treatment includes

homogenizing dwell periods at temperatures approaching, and ultimately, exceeding the

initial incipient melting temperature. A trial employing this heat treatment cycle was

conducted. Test pieces were submitted to Rocketdyne for evaluation and the cycle was

approved for solution heat treatment of the standard thermal gradient castings, based upon

microstructural conformity.

The required number (20) of 1.6 cm diameter by 17.8 cm length test bars were then cast,

heat treated according to the approved solution heat treatment schedule, evaluated for

porosity and crystal imperfections and shipped in acceptable condition. Sixty 1.25 cm

diameter by 15.2 cm length castings were poured for an expected yield of 34 pieces. The

casting furnace malfunctioned during the course of the run, causing a high occurrence of

grain defects in the test bars. Some of the bars exhibited acceptable primary orientations,

within 10 degrees of the <001> axis, and single crystal structure. Radiographic inspection

revealed detectable porosity and microstructural examination at Rocketdyne revealed the

porosity level to be much higher than acceptable. New test bar castings were ordered to

fulfill the program requirements and the required number of test bars was ultimately

received at Rocketdyne.

It was revealed during microstructural verification, that the solution heat treatment

applied to the second order of test bar castings had resulted in unacceptable incipient

melting, Figure 3-3. The presence of the large amount of incipient melting was anticipated

to significantly affect the mechanical properties of the baseline material and to reduce the

efficiency of the HIP process. It was decided that, with the cooperation of Howmet, an

experimental 'healing' heat treatment, based upon U.S. Patent No. 4,583,608, would be

applied to these specimens. Some risks were associated with this decision. The increased

time at the solution heat treatment temperature increases the possibility of

recrystallization and grain growth from handling damage. Internal microstructure,

however, was expected to be adequate since intentional incipient melting and then healing

can be used to facilitate more complete solutioning without deleterious affects. 8 The

resulting microstructure was acceptable according to PWA review and as confirmed by

Rocketdyne microstructural analysis.

One half of the standard gradient material was heat treated according to standard practice

for the alloy. The standard heat treatment consists of a two stage cycle following solution

12
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3-3 Rejectable incipient melting of standard thermal gradient castings.

heat treatment. The first stage is conducted at 1079°C for 4 hours. This cycle is normally

employed to diffusion bond aluminide coatings for oxidation and sulfidation protection in the

gas turbine environment. The first stage also serves as the primary _ precipitate

nucleation cycle. The second stage is precipitation aging for 32 hours at 871°C. This stage

allows some precipitate growth and maximizes the amount of _ in the final microstructure.

The remainder of the material was HIP according to a cycle developed by Rocketdyne and

later refined under the SSME program. A patent application (No. 07/033324) with notice

of allowability is currently under secrecy order by the U. S. Government. The process is

similar to that described in U. S. Patent No. 4,743,312. The HIP material was then

submitted to a local vendor for final heat treatment. The post-HIP heat treatment cycle

requires re-solution heat treatment since the cooling rate in typical HIP autoclaves is too

slow to prevent gross 7' precipitation and growth. During the re-solution heat treatment,

the vendor mistakenly placed the cast test pieces and demonstration turbine blade castings

on a niobium sheet supported by a molybdenum hearth. The nickel-niobium eutectic

temperature of 1175°C is significantly below the solution heat treatment temperature of

1288oc. The entire furnace load of test material, which included the high thermal gradient

cast/HIP castings for Task 4, was destroyed in the subsequent meltdown. After review of

possible recovery options, samples for Task 2 were substituted from Rocketdyne stock,

with approval of the NASA Program Monitor. The replacement test material was procured

13



from the same vendor as material for this program, though at an earlier date. The

chemistry of the master heat used to cast this material is compared to the original material

chemistry in Table 3-2. Microstructure is considered to be equivalent to the original test

material. The replacement test material was HIP and heat treated without incident. The heat

treatment employed for this material employed a slightly different heat treatment cycle

following solution heat treatment: 1010°C for 2 hours and 8710C for 48 hours. This cycle

had previously been found to slightly increase the _' size and, subsequently, improve

hydrogen embrittlement resistance. Analyses of the microstructures and properties of these

materials are presented under Task 5.

Table 3-2 Chemistry of PWA 1480 Substitute Material
Major Elements in Weight Percents

Ni Cr Co W Ta AI Ti
Program Bal 10.16 5.35 4.13 11.95 4.91 1.35
Replacement Bal 10.33 5.36 4.05 11.98 4.90 1.33

3.3 Task 3 High Gradient Solidification

The required high thermal gradient test material for this task and for Task 4 was procured

from another reportedly qualified single crystal casting vendor, AE Turbine Components of

Leeds, England. Test bars were cast from the master alloy procured from PCC in Task 1. A

total of twenty 1.25 cm diameter by 15.2 cm long, sixty eight 1.6 cm diameter by 17.8 cm

long and twelve sample HPFTP turbine blade castings were delivered. Grain defects were

infrequent and the required primary crystallographic orientation of less than 10 degrees

from <001> axis was met. The previously described stepped solution heat treatment was

supplied to this vendor for use on the program. AETC ran an unsuccessful trial run and

modified the heat treatment to account for incipient melting observed in microstructural

evaluation following the trial. Subsequent trials were successful, as was the heat treatment

of the deliverable items. All primary y was solutioned, less than 2% undissolved eutectic

was present and no incipient melting was evident. Detailed analysis of the material is

presented under Task 5.

3.4 Task 4 - High Thermal Gradient Cast, HIP

Test material for this task was HIP according to the previously developed cycle.

Unfortunately, the original castings for this task were also included in the solution heat

treatment meltdown. Replacement material for this task was also obtained from Rocketdyne

14



stock, with approval of the NASA Program Monitor. Castings had been previously produced

by AETC, employing the same process as the material intended for this program. The

replacement material was HIP and heat treated according to the alternate heat treatment

cycle. Details of the microstructure and properties are presented under Task 5.

3.5 Task 5 Evaluation

Work conducted under this task included quantitative microstructural evaluation,

mechanical properties evaluation and data analysis, fractography and correlation of results.

3.5.1 Microstructural Analysis

Due to the difficulties encountered in producing and processing material for the program,

the test material falls into two subsets; 1)castings originally produced for the program

from the designated master heat and 2) castings produced using the same processes, but

from different master heats. The use of the same casting parameters is considered to be of

primary importance for this program. The master alloy chemistry differences were small

and could introduce some slight differences in the results, but differences in mechanical

behavior, especially fatigue, should be a stronger function of overall microstructure.

Analysis of the microstructures for the different material subsets reveals that,

quantitatively, the dendrite arm spacings and pore size and volume fraction are quite

similar and that, qualitatively, the degree of homogeneity is similar. Small differences in

alloy chemistry and the difference in time frame of the castings will be neglected for the

remainder of the report.

The division between high thermal gradient casting and standard thermal gradient was set at

a gradient of 30°C/cm. Absolute measurement and comparison of thermal gradients was

considered to be inaccurate due to the many variables associated with that measurement. The

true solidification gradient is the temperature gradient within the solidification zone as

defined by the 'mushy', or two-phase, region bounded by the melt and the fully solidified

casting. The values typically measured are average gradients in the region extending into

the melt. Measurement techniques are also somewhat subjective, ranging from rough

measurement by thermocouples in the mold wall to rapid freezing of in-process samples

and subsequent measurement of the absolute height of the two-phase region. The published

typical thermal gradient for the high thermal gradient casting process employed in this

effort is 40°C/cm, well above the required cutoff limit. 9 The standard thermal gradient

was known to be significantly lower, in fact, at the low end of the commercial range. The
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data presented here may be considered to encompass the range expected from commercial

single crystal sources.

Another casting variable influences the microstructure of directionally solidified castings.

It is well known that the theoretical division between cellular and dendritic growth is

represented as a constant G/V, where G is solidification gradient and V is withdrawal

velocity.10 This has been verified for the superalloys. 11 It can also be demonstrated that

the fineness of the dendritic growth pattern is correlated to G x V, or solidification rate. 12

No attempt was made to control casting withdrawal rate in this program, as it was desired to

utilize commercial processes. Typical casting withdrawal rates, however, are in the range

of 35cm/hr.

Dendrite arm spacing measurements were made on a minimum of five metallographic

sections taken from the center of representative test bars. Measurements were made on

100X photomicrographs. The number of primary dendrites was counted for each area and

divided into the total area of the region to yield a dendrite 'area'. The average primary

dendrite arm spacing was taken as the edge length of a square with that representative area.

Typical optical photomicrographs of the cast materials are compared in Figure 3-4. The

dendrite arm spacing of the standard thermal gradient casting is approximately 445 p.m

compared to approximately 220 I_m for the high thermal gradient castings. The casting

thermal gradient was calculated from the data presented by McLean, 12 shown in Figure 3-

5, and assuming a withdrawal rate of 35cm/hr. The calculated thermal gradients are in

reasonable agreement with the published value for the high thermal gradient casting

process, as listed in Table 3-3.

Table 3-3 Calculated Casting Thermal Gradients

Calculated Gradient Published Gradient

Castino Process (.g.C/cm_ (_
Standard 12 --

High 50 40
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3-4 Microstructural comparison of a) standard thermal gradient and b) high

thermal gradient materials.
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The size, distribution and area fraction of pores in the castings were also measured.

Samples for porosity measurement were prepared similarly to those used for dendrite arm

spacing measurements with the exception that the final polishing was conducted using only

diamond slurry on silk cloth to avoid edge rounding. Samples were unetched. Typical

photomicrographs of the porosity are shown in Figure 3-6. Porosity measurements were

made on a quantitative metallograph. The maximum pore diameter (chord length) of each

pore was measured on sections cut transverse to the crystal growth direction. The average

area percent of porosity was measured for each area. Average maximum chord length,

maximum observed pore size and average area percent of porosity are presented in Table

3-4. Lower bound pore sizes are dictated by the imaging system and are in the 5 p.m range.

The area fraction of porosity observed in the standard gradient material has been verified

by independent observation. 13 Both pore size and area fraction appear to follow a

ii!iii_!i:!ii!

3-6 Typical casting porosity from a) standard thermal gradient and b) high thermal

gradient cast PWA 1480.

correlation with dendrite arm spacing as dictated by solidification rate. The size of the

metallographically observed pores, especially in the standard gradient material, was found

to be much smaller than the actual pores in the material. Pores with much larger aspect

ratios and larger chord lengths, even to the extent of interdendritic connection, were found

on fracture surfaces and as crack initiation sites. This indicates that planar section

evaluation is not sufficient to reveal the true extent of casting porosity. Larger porosity
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tends to become more irregular in shape. Planar section cuts through samples are unlikely

to be taken such that the true extent of the individual pores is revealed.

Table 3-4 Measured Casting Pore Sizes and Distributions

Average Maximum
Casting Pore Size Pore Size Area %
Gradient !urn! (um) Porosity
Standard 32 87 1.01

High 14 50 .30

As discussed previously, PWA 1480 has a limited solution heat treatment window. One

benefit of high thermal gradient casting is to provide an increased degree of homogenization

to the as cast structure. 14 This is qualitatively demonstrated by the ease with which the

high gradient cast material was solution heat treated relative to the standard gradient

castings. A peripheral advantage may be that the alloy can be HIP without danger of

incipient melting and without homogenization prior to the HIP cycle. Representative

photomicrographs of the fully heat treated microstructures are shown in Figure 3-7. All of

the materials exhibited acceptable microstructures. The degree of solutioning improves

with application of the HIP cycle and with the increased casting thermal gradient. The high

gradient/HIP/alternate heat treated material exhibited 100% solutioning of casting

eutectic. Small, isolated, MC-type carbides typical of this material, are visible in some

areas.

Two different precipitate aging heat treatment cycles were employed following solution heat

treatment of all materials. The first cycle is the standard PWA 1480 heat treatment of

1079Oc for 4 hours plus 871Oc for 32 hours. This heat treatment was applied only to the

standard thermal gradient/standard heat treated material. The alternate heat treatment was

originally developed under Rocketdyne internal research, for potential improvement in HEE

resistance. The heat treatment was designed around the heat treatment devised by ONERA of

France, for CMSX-2 and CMSX-3 alloys. Testing of that heat treatment showed a 50%

improvement in hydrogen/helium ductility ratio for CMSX-2 and CMSX-3. A similar

improvement was found for the alternate PWA 1480 heat treatment. 15 The goal was to

provide a somewhat larger (~0.4 pro) 7' size, relative to the 0.3 _m average size in the

standard heat treated condition, with a more uniform size distribution between the

interdendritic and dendritic regions. A somewhat larger precipitate size is believed to

reduce the planarity of slip in the alloy. This, in turn, is expected to decrease the degree of
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hydrogen concentration by dislocation motion and reduce the degree of HEE susceptibility.

The alternate heat treatment cycle of 1010oc for 2 hours plus 871°C for 48 hours was

applied to the standard thermal gradient/HIP material and both the high thermal gradient

non-HIP and HIP materials.Scanning electron microscope photomicrographs of the

distributions for all of the materials are shown in Figures 3-8. In general, the desired 7'

distribution is achieved with the alternate heat treatment.

3.5.2 Mechanical ProDerties Test Procedures

The castings and, consequently, the machined test bars employed for mechanical property

evaluations were all within 10 degrees of the <001> crystallographic direction. Testing

conducted prior to this program has shown that yield strength can decrease by up to 6%

from 0 to 10 degrees from the <001> axis. Stress rupture lives are also slightly affected.

No attempt was made to determine the precise alignment of each test sample. The slight

variability in properties due to orientation is somewhat averaged by multiple tests of

randomly selected samples for each test condition. Differences in properties, which fall into

the expected scatterband due to orientation, are discounted as being within experimental

error.

Specimens for all tests were low residual stress crush ground from the test bars produced

from Tasks 2, 3 and 4. All gage sections were longitudinally polished to remove

circumferential grinding marks and to further ensure low residual stress. The specimen

gage diameters were 0.635 cm. Three tensile tests were conducted at room temperature

(about 24oc) and 760oc, in air, at an engineering strain rate of 0.005/min., for each

material condition. Three stress rupture tests were conducted in air at 871oc, with an

initial stress of 620 MPa for each material condition. Low cycle and high cycle fatigue test

numbers were determined by application of "t-distribution" statistics to data for similar

materials, available at the onset of the program. It was determined from that analysis that 3

low cycle fatigue tests and 8 high cycle fatigue tests for each material condition, under the

same test parameters, would provide 90% confidence in a demonstrated 50% difference in

life. The data generated under this program are evaluated on the same basis. The three low

cycle fatigue tests were conducted in air at 538°C and a fully reversed strain range of

2.0%. High cycle fatigue tests were conducted at room temperature and 871°C, with an R

(maximum stress/minimum stress) of 0.47. Tests were conducted at maximum stresses

ranging from 793 MPa to 896 MPa, dependant on material condition. Eight tests were

planned for each material condition.
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Post-test evaluation centered on characterization of fractography and correlation of

results. Details of crack initiation and propagation were catalogued.

3.5.3 Mechanical ProDerties Evaluation

3.5.3.1 Tensile Tests

Average tensile strengths and ductilities for the four material conditions are presented in

Table 3-5. Full listings of the data are presented in the Appendix. As can be seen in Table

3-5, HIP, high gradient casting and alternate heat treatment had only a slight, if any,

influence on tensile properties at room temperature but may provide an improved

strength-ductility balance at 760°C. Several of the standard gradient/HIP/alternate heat

treated test bars failed at transverse grain boundaries. These secondary grains encompassed

the entire gage section. Grains of this size are usually caused by grain growth from high

residual stresses caused by surface damage incurred during handling. These test results

were discounted during data analysis. The high thermal gradient/HIP/alternate heat treated

material exhibits very low yield strength, especially at elevated temperature. As shown in

the Appendix , the tensile properties of this material were extremely inconsistent. Only one

of the three tests conducted at 760°C exhibited properties consistent with the other

material conditions. Review of the heat treatment records revealed that the furnace cooling

rate from the post-HIP solution heat treatment temperature exceeded the 60°C/minute

minimum requirement. The test bars, however, were found to have been stacked in full

contact in the heat treat furnace. Specific directions provided to the vendor to maintain

separation between the bars were ignored. As a consequence of the close packing of the test

material, the bars on the outside of the stack received adequate cooling, while those

Table 3-5 Average Tensile Test Results

Yield Ultimate Reduction
Casting Heat Temperature Strength Strength of Area Elongation
Gradient Treatment (oC) (MPa! (MPa) (%) (%)
Standard Standard 2 4 1 024 1 075 12.5 11.7
Standard HIP/AIt. 24 989 1219 9.2 9.8

High Alternate 24 1 080 1209 1 0.3 10.3
High HIP/AIr. 24 973 1003 3.8 NA

Standard Standard 760 1149 1273 7.6 5.0
Standard HIP/AIt. 760 1067 1240 12.9 13.2

High Alternate 760 1110 1303 12.6 NA
High HIP/AIt. 760 972 1136 24.8 12.5
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on the inside were cooled more slowly due to thermal mass. The properties demonstrated by

the material are, therefore, biased toward the low range. Sample cutups of the test material

revealed no qualitative difference in microstructure due to the slow cooling rate. Detailed

analysis was not possible due to time and funding limitations.

3.5.3.2 Stress Rupture Tests

Results of the high load stress rupture tests are presented in Table 3-6.

Table 3-6 Average Stress Rupture Results
871°C, 620 MPa Inltlal Stress

Time to
Casting Heat Rupture Elongation
Gradient Treatment (Hours! _%)
Standard Standard 1 4 NA
Standard H I P/A It. 4 2 2

High Alternate 9.4 1 5
High HIP/AIr. 2.8 6.2

Analysis of

the fracture behavior reveals that cracking initiates at internal porosity in the non-HIP

material. The crack growth region surrounding the pores is in a Stage II, quasi-cleavage,

mode. These cracks then link by ductile tearing of the intermediate regions. These features

are indicated in Figure 3-9. A longitudinal section through the gage length of a failed stress

rupture bar is given in Figure 3-10. Cracking is observed along the gage section of the bar.

A higher magnification view of a pore with numerous initiated microcracks is presented in

Figure 3-11.

Longer stress rupture lives of the high thermal gradient cast and/or HIP material were

expected, based upon two factors. First, both processes result in a significantly greater

degree of homogenization in this somewhat difficult to solution heat treat alloy. This

provides a slightly increased volume fraction of strengthening y. The decreased alloying

element segregation also allows the 7' sizes to be more closely equilibrated near an optimum

size between the dendritic and interdendritic regions. A secondary factor for improved life

is the reduction in size and fraction of internal casting porosity. Smaller, or eliminated,

pores delay the initiation of critical size flaws until later in the creep life, thus delaying

the onset of tertiary creep and ultimately, fast fracture. This effect would not be expected to

be as dramatic at lower stresses and higher temperatures where aircraft operating

conditions predominate. Lower (-200 MPa) applied stresses under these conditions would

result in stress intensities, at the pores, below the threshold for macroscopic crack
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growth. In addition,highertemperatureswouldpromotediffusecracktip slip processes,
effectivelybluntingthe crack and further reducing the propensity for crack growth. The

observed shortened rupture lives of the advanced processed materials are believed to have

been caused by the different microstructure imparted by the alternate heat treatments. A

somewhat larger 1/size allows easier dislocation bypass and, hence, increases the creep

rate and leads to shorter lives. This higher creep rate, apparently, more than offsets the

benefits expected from reduced porosity and higher precipitate volume fraction. The

extremely low life of the high gradient/HIP/alternate heat treated material is directly

attributable to the relatively low strength caused by slow cooling from solution heat

treatment.

3-9 Fracture surface of a non-HIP high gradient cast stress rupture bar shows crack

initiation at internal casting porosity (area A) and crack link-up by ductile tearing in

intervening regions (area B).
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3-11 High magnification view from Figure 3-10 shows multiple crack initiation sites at

casting pore.

3.5.3.3 Fatigue Tests

The a priori statistical analysis determined that 3 LCF tests would be adequate to

demonstrate the required life differences. Low cycle fatigue test results are presented in

Table 3-7.

Table 3-7 Average Low Cycle Fatigue Data
538 °C, 2.0% Total Strain Range

Casting Heat Number Cycles Standard
Gradient Treatment of Tests to Failure Deviation
Standard Standard 3 3 9 3 5
Standard HI P/AIt. 3 7 8 5 8

High Alternate 2 1 6 4 5 2
High HIP/AIt. 3 1.5 2.2

The t-distribution calculations provide the following confidence levels for the differences

in life between the indicated material conditions:

2?



1. Standard/standard and Standard/HIP/Alternate 82%

2. Standard/standard and High/Alternate >95%

3. Standard/HIP/Alternate and High/Alternate 87%.

Comparisons between the high gradient/HIP/alternate material and the other conditions are

not practical or realistic due to the poor properties associated with the slow cooling rate

from the solution heat treatment. The statistics associated with the 3 other materials are

very close to the 90% confidence level goal set at the beginning of the program. The

comparisons clearly show that HIP and alternate heat treatment of the standard thermal

gradient cast material significantly improves low cycle fatigue life. High gradient casting,

even without HIP provides an additional increase over both the standard gradient/standard

heat treated and the standard gradient plus HIP materials. The very low lives of the high

gradient/HIP/alternate heat treated material are caused by the poor solution heat

treatment, as previously discussed. The low yield strength allows a much greater amount of

plastic strain for a constant applied total strain range. A plot of cyclic life as a function of
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3-12 Low cycle fatigue life as a function of plastic strain range of the first full cycle.
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the plastic strain range in the first full cycle is presented in Figure 3-12. Low cycle

fatigue life is found to correlate roughly with plastic strain range, especially within each

material condition. The peak stress in the first cycle follows an inverse relationship with

plastic strain range. Although plastic strain range diminished significantly with number of

cycles, very little cyclic hardening was observed in any test.

Fractographic analysis reveals that low cycle fatigue crack initiation occurs at or near the

specimen surface under the conditions employed. Initiation can be traced to near surface

porosity for non-HIP material and to surface associated defects such as machining marks or

to slip band impingement on the specimen surface, as shown in Figures 3-13 and 3-14.

Crack propagation is always Stage I, crystallographic on {111} type planes. In most cases,

the fracture occurs along a single plane which encompasses the entire specimen cross

section as shown in the side of a failed specimen in Figure 3-15. This fracture behavior is

typical of single crystal superalloys in the low to intermediate temperature regime. The

standard gradient/HIP material was found to exhibit shorter lives than the non-HIP high

gradient material. It was anticipated that porosity removal would be of most benefit to the

fatigue life. However, it was found that the standard gradient/HIP castings contained some

3-13 Low cycle fatigue crack initiation at near surface casting pore.
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3-14 Low cycle fatigue crack initiation at specimen surface with mixed mode propagation

between two intersecting {111} facets.

3-15 Macroscopic single facet low cycle fatigue failure. Parallel slip bands are evident on

the gage length surface (arrow).
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secondary grains, which may have been caused by closure of the extremely large pores

occasionally found in the material.

As noted, the statistical analysis dictated that 8 samples be tested for each material

condition at a given stress state in high cycle fatigue. The standard thermal

gradient]standard heat treated baseline material was tested at a maximum stress of 793

MPa and a stress ratio of 0.47. Initial qualification test results for the HIP material

immediately demonstrated that this maximum stress was not adequate to cause failure in

less than 10 million cycles, the designated runout condition. The maximum stress was

increased to cause failure in the HIP samples. Therefore, the statistical analysis cannot be

directly conducted for every test condition. High cycle fatigue test results are presented

fully in the Appendix. The results are discussed quantitatively and statistics are applied,

where possible, in this section.

High cycle fatigue testing was the most sensitive to internal microstructure as affected by

the application of advanced processing methods. A significant difference was found between

the macroscopic fracture characteristics of the samples tested at room temperature versus

those tested at 871°C under the same stress conditions. Room temperature fractures

initiated predominantly at surface, or near surface, defects. Fracture propagated in Stage I

mode along intersecting {111} type planes radiating outward from the initiation site,

Figure 3-16. Fractures of the samples tested at 871°C generally exhibited initiation at

some discontinuity in the specimen interior, though some fractures initiated at or near the

specimen surface. Fractures which initiated in the specimen interior propagated in Stage II,

perpendicular to the stress axis until overload occurred, Figure 3-17. The Stage II region

is macroscopically very smooth. One interesting feature which was often observed was the

nearly square appearance of the Stage II region. The edges of the square were found to be

parallel to the <001> crystallographic directions while the diagGnal was parallel to the

<011> directions. Crack propagation appears to be somewhat faster in the <011> direction

than in the <001> direction, an observation supported by independent crack growth

measurements.15 Fractures which initiated at or near the surface during 871°C testing,

initially propagated in Stage II and transitioned to mixed-mode cracking prior to overload,

Figure 3-18.Some fractures of the standard gradient]HIP/alternate heat treated samples

initiated at what were very clearly internal grains, Figure 3-19. The HIP cycle had not

previously been shown to produce recrystallization in production quality test bars or blade

castings. These grains may be either recrystallization due to HIP pore closure at the
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3-16 Room temperature high cycle fatigue fracture shows surface initiation and multiple

facet Stage I propagation leading to overload.

3-17 Elevated temperature high cycle fatigue fracture, initiated at internal porosity. Note

rounded-square Stage II crack front.
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3-18 Elevated temperature high cycle fatigue fracture, initiated at surface (arrow).

Propagation is Stage II followed by overload.

3-19 High cycle fatigue crack initiation at secondary grains in a)non-HIP and b) HIP

samples.

33



24C, R = 0.47
STANDARD GRADIENT PWA 1480

1000 t 1000+ !"I +950 HIP _ 950

_c _)o a rn ,- 9OO
re,

t': I-

• 8,50

• a eo eee ...., ....... •<m8oO7so
7501103 ...............1 0 4 1u 5 10 6 10 7

CYCLES TO FAILURE

871C, R = 0.47
STANDARD GRADIENT PWA 1480

[]

I
[]

rn []

• NON-HIP

[] HIP

b

0 3

I

• • !..,.| • • =..,.|

10 4 10 5

CYCLESTO FAILURE

3-20 High cycle fatigue life comparison for non-HIP and HIP standard thermal gradient

cast PWA 1480 at a) room temperature and b) 871C.

extremely large porosity due to the low casting gradient or secondary grains from the

casting process. It should be noted that the fatigue lives of these test bars appear to exceed

the lives of the standard gradient/standard heat treated alloy, Figure 3-20. Secondary

internal grains, if they occur, reduce the benefit due to HIP, but some increase in life is

still noted relative to non-HIP material. High cycle fatigue testing at 871°C showed

evidence of the poor solution heat treatment of the high thermal gradient cast/HIP/alternate

heat treated material. The life of this material was statistically no different from the

baseline standard gradient/standard heat treated material. This can be attributed, in part,

to increased creep allowed by the large y precipitates.

A summary of mean life, standard deviation and number of tests conducted is presented in

Table 3-8 for tests conducted at a maximum stress of 793 MPa, R=0.47 and at room

temperature and 871°C. Valid statistical comparison is available between the standard

gradient/standard heat treated alloy and the high gradient/alternate heat treated alloy at

room temperature. The t-distribution calculation reveals that the mean lives are valid with

a confidence of greater than 95%. At 871°C, comparison can be made between the standard

gradient/standard heat treated, high gradient/alternate heat treated and high

gradient�HIP�alternate heat treated materials. The difference in life between the standard

gradient/standard heat treated and high gradient/alternate heat treated material is valid
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with greater than 99.5% confidence.The difference between the baseline and high

gradient/HIP/alternate heat treated materials is statistically negligible.

Table 3-8 High Cycle Fatigue Test Results
24°C, R=0.47,793 MPa Maximum Stress

Average
Casting Temperature Heat Number Cycles to Standard
Gradient (0-(3) Treatment of Tests Failure Deviation
Standard 2 4 Standard 8 58881 42528

t

Standard 2 4 HIP/AIt. - .......

High 24 Alternate 4 3.13X106 4.60X106

High 2 4 HIP/AIr. 1 4.30X 106 .....
Standard 871 Standard 8 74320 60163

t

Standard 871 HIP/AIt. - .........

High 871 Alternate 5 1.18X106 5.94X105
High 871 HIP/AIr. 6 71246 72817

*Tested at different stress levels

3.6 Task 6 Additional Material

A number of test bars and sample HPFTP turbine blade castings produced through each of

the 4 casting and post-casting processes were required to be supplied to the NASA Program

Monitor. Specifically, twenty 1.25 cm diameter by 7.6 cm long, nine 1.6 cm by 8.8 cm

long test bar castings and six sample turbine blades were required for each material

condition. Standard thermal gradient/standard heat treated and high thermal

gradient/alternate heat treated test bar castings and sample blades were supplied from the

original program material. Standard thermal gradient/HIP/alternate heat treated test

material was supplied from the material substituted to replace the destroyed samples. No

additional turbine blade castings were available. A new procurement of high thermal

gradient test bars was needed to fulfill the contract requirement for high thermal gradient

cast/HIP/alternate heat treated test material.
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4.0 DISCUSSION

4.1 Alternate Heat Treatment

The influence of the alternate heat treatment on the material properties is difficult to

assess. The alternate heat treatment was coupled, in every case, to another change in

process variable relative to the standard gradient/standard heat treated material. The heat

treatment was originally devised by Rocketdyne for potential improvements in hydrogen

environment embrittlement and was employed here for possible high cycle fatigue life

improvements. An addition to the program matrix, either standard gradient/alternate heat

treatment or high gradient/standard heat treatment, would be required to separate the

variables. Based upon the low cycle fatigue test results, an improvement in low cycle

fatigue life is expected with a higher yield stress and attendant reduced plastic strain range,

for a given total strain range. It is unlikely that the heat treatment would have any

influence on high cycle fatigue properties. Microstructural changes, including 7' rafting,

have been found to have no influence on the high cycle fatigue life of similar alloys. 16

Disregarding the interactions with HIP and high gradient casting, the current data indicate

that the alternate heat treatment may improve the strength-ductility balance of PWA 1480

at elevated temperature. However, there also appears to be a detriment to high load stress

rupture life at intermediate temperature.

4.2 Hot Isostatic Pressing.

Hot isostatic pressing was instituted to eliminate porosity as fatigue crack initiation sites.

Porosity was totally eliminated from the materials subjected to HIP in this program. The

HIP cycle employed was developed to successfully HIP material produced by a casting

gradient midway between the standard and high gradients used in this program. Testing of

that material revealed significant improvements in low cycle and, especially, high cycle

fatigue lives due to HIP. The properties of the high gradient/HIP/alternate heat treated

material are poor due to the relatively low cooling rate from the post-HIP solution heat

treatment. HIP of the standard thermal gradient material may have caused internal

recrystallization in some of the test bars. The type of internal grains observed, however,

could have been the result of secondary included grains from the casting process. Internal

recrystallization could also have been caused by closure of the extremely large porosity

present in this test material. This level of porosity was outside the experience range of the

HIP process. Some large recrystallized grains may also have initiated at the test bar casting

surface due to damage from prior handling. In addition, many of the cyclic failures were

36



observed to initiate at or near the specimen surface. This level of incipient melting is also

beyond allowable specification limits for production quality material. Regardless of the

microstructural results, the cyclic lives of this material were superior to the non-HIP

standard gradient material. Even with other internal defects, the removal of the casting

porosity provided improvements in fatigue lives. HIP of good quality castings with

subsequent good heat treatment has been shown to provide even more life improvement.

4.3 High Thermal Gradient Casting

The primary objective of the application of high thermal gradient casting was to reduce the

volume fraction and size of the interdendritic casting porosity. A significant reduction in

both was observed. The primary benefit to material properties was realized as an increase

in both high cycle and low cycle fatigue lives. The improvements were verified by high

statistical confidence levels. Improved homogeneity, due to the high gradient casting, was

not shown to have a demonstrated effect on fatigue properties. Any benefit accrued to

monotonic properties as a result of high thermal gradient casting, was difficult to assess

due to the introduction of the alternate heat treatment to both high gradient cast material

conditions. The high gradient/alternate heat treated material did exhibit the best

combination of strength and ductility at both room temperature and 760oc. Stress rupture

lives were found to be lowered relative to the standard material for all three advanced

processed material conditions.

4.4 Interactive Effects

Interactive effects of the three advanced single crystal processing methods are difficult to

assess, due in part to the coupling of the alternate heat treatment to the other techniques and

due also to the difficulties encountered in the program. The benefit of high gradient casting

to subsequent HIP is apparent. It may be projected that improved microstructural

homogeneity can negate the need to apply a pre-HIP solution heat treatment in order to

avoid incipient melting during the HIP cycle. Smaller initial pore size is also advantageous.

Pore closure in high thermal gradient cast material may require less time at the solution

heat treatment temperature and lower pressure during HIP. Both of these factors lessen the

possibility of recrystallization due to mechanical deformation around the closing pores.
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5.0 Conclusions and Recommendatiort_

Based upon the previously discussed results, high thermal gradient casting is strongly

recommended though the expected benefits are no fully demonstrated due to heat treatment

problems with the HIP, high gradient material. Clear improvements to both low cycle and

high cycle fatigue life were demonstrated. With the use of the standard rather than the

alternate heat treatment, no adverse affects on stress rupture life should be expected.

Tensile properties are also not adversely affected. The only apparent tradeoff, with

improvements in high thermal gradient casting processes, is the need to adjust to

production economies. Obviously, single article, laboratory scale, casting techniques cannot

be feasible. The current industry trend is toward smaller furnace diameters and tailored

baffling to achieve greater control over casting gradients. Exotic cooling methods, such as

liquid metal cooling, are not expected to become commercial. High thermal gradient casting

is helpful in providing improved homogeneity, which, in turn, may expand the useable

solution heat treatment range. High gradient microstructures should also be more easily

HIP by negating the need to pre-HIP solution heat treat alloys, such as PWA 1480, with

narrow heat treatment temperature ranges. The high gradient material would be expected to

provide wider windows for temperature and pressure during the HIP cycle.

Fatigue testing of HIP PWA 1480 under the Space Shuttle Main Engine program has

demonstrated a significant increase in cyclic properties relative to non-HIP material. The

data derived under this current program do not demonstrate the potential of this process.

Some benefit to low cycle and high cycle fatigue lives was shown for the standard

gradient/HIP/alternate heat treated material, even though that material was not of

production quality. Tests results of the high gradient�HIP�alternate heat treated material

were invalidated due to the poor post-HIP solution heat treatment. Because of the potential

improvements due to single crystal HIP, the recommendation from this program is to

further evaluate HIP single crystals, especially material produced from high thermal

gradient castings.

The potential benefits due to the application of the alternate heat treat appear to be slight.

High cycle fatigue lives are shown to be strongly dependent on defects and crack initiation as

opposed to microstructural influences on crack propagation. Therefore, the alternate heat

treatment will not influence high cycle fatigue behavior. However, the test results indicate

that higher yield stress and the attendant reduction in plastic strain range, at a given total

strain range, improves low cycle fatigue life. An improvement in the elevated temperature

strength and ductility balance, which should improve low cycle fatigue life, was also shown.
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A tradeoff with reduced stress rupture life must be considered. In general the benefits are

not strong enough to warrant a significant change in processing, with the attendant need to

fully recharacterize the alloy.
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Tensile Test Results

APPENDIX

Material Condition
Std/Std

Std/HIP/AIt

High/AIt

High/HIP/AIt

Reduction
Yield

Temperature Strength
Specimen (C! (MPa)

ABO1 2 0 9 69
AB02 2 0 1 0 78
AB03 2 0 1 025
AB04 760 11 69
AB05 760 11 56
AB06 76 0 1 1 23

Ultimate

Strength
(MPa)
969

1213
1044
1290
1258
1272

Elongati()n

20 0
50

100
60
1 0
80

of Area
(%)

18.3
8.5

10.8
10.1
1.6
11.0

AG01 2 1 983 1 349 9.5 9.3
AG02 21 971 1 114 10.0 10.8
AG03 21 1011 11 94 8.0 9.4
AG04 760 1069 1240 12.5 21.0
AG05 760 1065 1 230 14.0 16.0
AG06 760 .... 6 91 1.0 1.6

AA01 20 1085 1169 10.0 10.0
AA02 20 1087 1328 10.0 7.8
AA03 20 1069 1128 11.0 13.0
AA04 760 1069 1282 - - 12.4
AA05 760 1145 1310 - - 13.1
AA06 760 111 7 131 7 - - 16.3

AH01 21 908 952
AH02 21 985 1006
AH03 21 1027 1052
AH04 760 888 1054
AH05 760 896 1032
AH06 760 1133 1322

- - 1.0
- - 1.9
- - 8.7

20.0 43.0
5.0 6.7
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_;tress Ruoture Tests at 871C

Material Condition Specimen
Std/Std AB01

AB02
AB03

Std/HIP/AIt

High/AIt

High/HIP/AIt

In it ia I Reduction
Stress Life of Area Elongation
fMPa) (Hours_ (O/o_ (%_
621 0.0" - - - -
621 21.0 ....
621 7.1 ....

AG01 6 21 2.9
AG02 6 21 0.0*
AG03 6 21 5.1

16.3 12.0
0.0 0.0

35.5 33.0

*Failed on Load

AA01 552 63.4 14.6 - -
AA02 621 12.7 13.8 - -
AA03 621 6.1 16.3 - -

AH01 6 21 4.5
AH02 6 21 1.8
AH03 6 21 2.1

5.9
6.8
6.2

High Cycle Fatioue Tests. R = 0.47

Material Condition
Std/Std

Maximum Cycles to
Temperature Stress Failure

Specimen (C! (MPa! fxl000!
AB01 2 0 793 8 2
AB02 2 0 793 7 7
AB03 2 0 79 3 1 7
AB04 2 0 793 1 1 3
AB05 2 0 79 3 4 2
AB06 2 0 79 3 1 8
AB07 2 0 793 1 1
AB08 2 0 793 1 1 2
AB09 871 793 1 59
AB10 871 793 1 37
AB11 871 793 29
AB12 871 793 42
AB13 871 793 2 1
AB14 871 793 1 43
AB15 871 793 35
AB16 871 793 28

Std/HIP/AIt AG01 20 862 1,900
AG02 2 0 89 6 4
AG03 2 0 89 6 4 5
AG04 2 0 8 9 6 4 1

42

Initiation
Site

Surface
Surface Pore
Surface Pore
Surface Pore
Surface Pore
Surface
Surface Pore
Surface Pore

Internal Pore
Surface Pore

Internal Facet
Surface/grain
Surface
Surface



Hi oh Cycle Fatioue Tests. R = 0.47 (continued)

Material Condition

High/AIt

High/HIP/AIt

Maximum Cycles to
Temperature Stress Failure

Specimen (C) fMPa! !x1000)
AG05 2 0 862 3 9
AG06 2 0 827 5 6
AG09 871 896 6 4
AG10 871 896 3
AG11 871 862 4 1
AG12 871 862 39
AG13 871 862 41
AG14 871 862 43
AG15 871 862 76
AG16 871 862 0

AA00 871 793 925
AA01 871 793 997
AA02 871 793 769
AA03 2 0 793 957
AA04 20 793 1 90
AA05 20 793 >10,000
AA06 20 793 1,394
AA07 871 793 2,229
AA08 871 793 974

AH01 2 1 793 4,300
AH02 2 1 862 4 4
AH03 2 1 862 3 6
AH04 2 1 862 4 1
AH05 21 862 3 3
AH06 21 862 3 9
AH07 21 862 4 4
AH08 21 862 4 4
AH09 871 793 1 71
AH10 871 793 2
AH11 871 793 86
AH12 871 793 47
AH13 871 793 1 52
AH14 871 793 45

Initiation
Site

Surface
Surface
Surface
Internal Grain
Internal Grain
Internal
Internal Grain
Surface
Surface
Failed on Load

Internal Pore
Internal Grain

Surface Pore

Internal Pore
Surface Pore

Thread
Surface
Surface
Surface
Surface
Surface
Surface
Surface
Bad Test
Thread
Surface

Low Cycle Fatioue Tests at 538C

Material Condition SPecimen
Std/Std AB01

AB02
AB03

Total
Strain

Range
(%)

2.0
2.0
2.0

Plastic
Strain Range
First Cycle

f%_
0.28
0.52
0.35

Cycles to
Failure

79
13
24

Std/H I P/AIt AG01 2.0 0.51 5 4
AG02 2.0 0.45 1 44

43

Initiation
Site

Surface Pore
Plane Intersection
Surface Pore

Surface



AG03 2.0 0.45 35

High/AIt

High/HIP/AIt

AA01
AA02
AA03

AH01
AH02
AH03

2.4
2.0
2.0

2.0
2.0
2.0

0.56
0.40
0.32

1.0
. °

32
128
201

.25
4

. .

Surface Pore
Surface Pore
Surface Pore

Failed on Load
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